Learn Keras for Deep Neural Networks
708 Kč 901 Kč
SECTION 1: Prepares the reader with all the necessary gears to get started on the fast track ride in deep learning. Chapter 1: Deep Learning & Keras\nChapter Goal: Introduce the reader to the deep learning and keras framework
\nSub -Topics
\n- \n
Exploring the popular Deep Learning frameworks
\n \nOverview of Keras, Pytorch, mxnet, Tensorflow,
\n \nA closer look at Keras: What\'s special about Keras?
\n \n
Chapter 2: Keras in Action\nChapter Goal: Help the reader to engage with hands-on exercises with Keras and implement the first basic deep neural network
\nSub - Topics
\n- \n
A closer look at the deep learning building blocks
\n \nExploring the keras building blocks for deep learning
\n \nImplementing a basic deep neural network with dummy data
\n \n
SECTION 2 - Help the reader embrace the core fundamentals in simple lucid language while abstracting the math and the complexities of model training and validation with the least amount of code without compromising on flexibility, scale and the required sophistication \n Chapter 3: Deep Neural networks for Supervised Learning\nChapter Goal: Embrace the core fundamentals of deep learning and its development
\nSub - Topics:
\n- \n
Introduction to supervised learning
\n \nClassification use-case - implementing DNN
\n \nRegression use-case - implementing DNN
\n \n
Chapter 4: Measuring Performance for DNN\nChapter Goal: Aid the reader in understanding the craft of validating deep neural networks
\nSub - Topics:
\n- \n
Metrics for success - regression
\n \nAnalyzing the regression neural network performance
\n \nMetrics for success - classification
\n \nAnalyzing the regression neural network performance
\n \n
SECTION 3 - Tuning and deploying robust DL models
\nChapter 5: Hyperparameter Tuning & Model Deployment\nChapter Goal: Understand how to tune the model hyperparameters to achieve improved performance
\nSub - Topics:
\n- \n
Hyperparameter tuning for deep learning models
\n \nModel deployment and transfer learning
\n \n
Chapter 6: The Path Forward
\nChapter goal - Educate the reader about additional reading for advanced topics within deep learning.
\nSub - Topics:
\n- \n
What\'s next for deep learning expertise?
\n \nFurther reading
\n \nGPU for deep learning
\n \nActive research areas and breakthroughs in deep learning
\n \nConclusion
\n \n
Autor: | Moolayil, Jojo John |
Nakladatel: | Springer, Berlin |
ISBN: | 9781484242391 |
Rok vydání: | 2019 |
Jazyk : | Angličtina |
Vazba: | brožovaná/paperback |
Počet stran: | 132 |
-
Leading Pharmaceutical Operational Ex...
Friedli, Thomas
-
Quantensinn und Quantenunsinn
Bricmont, Jean
-
Statistik für alle
Krämer, Walter
-
Molekularbiologie, Genomics
Mülhardt, Cornel
-
Notfallsonographie
Michels, Guido
-
Bewertungen in Umweltschutz und Umwel...
Stelzer, Volker
-
War for Talents
Busold, Matthias
-
Six Sigma - kompakt und praxisnah, m....
Melzer, Almut
-
Lehrbuch der radiologischen Einstellt...
Becht, Stefanie
-
Kindernotfälle im Rettungsdienst
Flake, Frank
-
Repetitorium Notfallmedizin
Brokmann, Jörg
-
Therapiemanuale für die neuropsycholo...
Finauer, Gudrun
-
Achtung: Statistik
Christensen, Björn
-
Psychotherapie bei Psychosen
Hartwich, Peter
-
Humangeographie kompakt
Freytag, Tim
-
Führungskompetenz ist lernbar
Tewes, Renate