Introduction to Riemannian Manifolds
5
%
1618 Kč 1 701 Kč
Odesíláme do 5 až 7 dní
Sleva až 70% u třetiny knih
It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet's Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Autor: | Johns Lee |
Nakladatel: | Springer International Publishing AG |
ISBN: | 9783319917542 |
Rok vydání: | 2019 |
Jazyk : | Angličtina |
Vazba: | Hardback |
Počet stran: | 437 |
Mohlo by se vám také líbit..
-
Introduction to Topological Manifolds
Johns Lee
-
How to Make a Million - Slowly
Johns Lee
-
Trampships, Tankers and Polite Conve...
Johns Lee
-
Complex Analysis with Applications
Goldstein, Larry J.; Schneider, David I.; Lay, David C.; Asmar, Nakhle H.
-
Lie Groups, Lie Algebras, and Repres...
Hall, Brian J
-
Theory and Simulation of Random Phen...
Vitali, Ettore; Motta, Mario; Galli, Davide Emilio
-
Geometrical Themes Inspired by the N...
-
Time Series Analysis and Its Applica...
Shumway, Robert H.; Stoffer, David S.
-
A Brief Introduction to Berezin-Toepl...
Le Floch, Yohann
-
Homotopical Topology
Fomenko, Anatoly; Fuchs, Dmitry
-
Markov Chains
Moulines, Eric; Stoffer, David S.; Douc, Randal
-
Differential Equations
Constanda, Christian
-
Linear Algebra Done Right
Axler, Sheldon
-
Galois Theory Through Exercises
Brzezinski, Juliusz
-
The Discrete Math Workbook
Kurgalin, Sergei; Borzunov, Sergei
-
Optimization and Approximation
Pedregal, Pablo