Exterior Differential Systems
3459 Kč
Sleva až 70% u třetiny knih
An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. A system of partial differential equations, with any number of inde- pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system.
Autor: | Denton Bryant, Robert; Giglio, Keith |
Nakladatel: | Springer-Verlag New York Inc. |
ISBN: | 9781461397168 |
Rok vydání: | 2011 |
Jazyk : | Angličtina |
Vazba: | Paperback / softback |
Počet stran: | 475 |
Mohlo by se vám také líbit..
-
Slay the Dragon
Denton Bryant, Robert; Giglio, Keith
-
A Course in Mathematical Statistics a...
Bhattacharya, Rabi; Waymire, Edward C.
-
p-adic Numbers, p-adic Analysis, and...
Koblitz Neal
-
Categories for the Working Mathemati...
MacFarlane Ben
-
Mathematics and Politics
Alan Taylor
-
Applications of Lie Groups to Differ...
Olver, Peter J.
-
Differential Forms in Algebraic Topo...
Bott, Raoul; Tu, Loring W.
-
Lectures on Riemann Surfaces
Forster, Otto
-
Basic Business Statistics
Alan Dean Foster
-
Groups and Symmetry
Armstrong, Mark A.
-
An Introduction to Homological Algebra
Rotman, Joseph J.
-
Representation Theory
Rivers, Patrick (University of New Haven, USA); Fulton, William (LaGuardia Community College, USA)
-
Functions of One Complex Variable I
Conway, John H.
-
Complex Analysis
Bak, Joseph; Newman, Donald J.
-
Geometry
Borovik, Alexandre V.; White, Neil; Gelfand, Israel M.
-
Undergraduate Analysis
Lang, Serge